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The present work gives a comprehensive numerical study of the evolution and decay 
of cylindrical and spherical nonlinear acoustic waves generated by a sinusoidal 
source. Using pseudospectral and predictor-corrector implicit finite difference 
methods, we first reproduced the known analytic results of the plane harmonic 
problem to  a high degree of accuracy. The non-planar harmonic problems, for which 
the amplitude decay is faster than that for the planar case, are then treated. The 
results are correlated with the known asymptotic results of Scott (1981) and Enflo 
(1985). The constant in the old-age formula for the cylindrical canonical problem is 
found to be 1.85 which is rather close to  2, ‘estimated’ analytically by Enflo. The old- 
age solutions exhibiting strict symmetry about the maximum are recovered ; these 
provide an excellent analytic check on the numerical solutions. The evolution of the 
waves for different source geometries is depicted graphically. 

1. Introduction 

generalized Burgers equation 
The nonlinear acoustic waves generated by a sinusoidal source are described by the 

U,-[(y+ l)/2a;] UU,+JU/2r = ( d / 2 4 )  u,,, (1 .1)  

where U is the particle velocity, 7 is the retarded time t--/a,, a, is the small-signal 
sound speed, d is the diffusivity of sound (Lighthill 1956), y is the adiabatic 
exponent, and J = 1 or 2 for cylindrical or spherical waves, respectively. The 
derivation of these equations may be found in Leibovich & Seebass (1974) and 
Sachdev (1987). The boundary condition on the source r = ro is 

U(T, ,  7) = U, sin (w), (1.2) 
where U, is the amplitude and o the frequency of the sinusoidal source. The 
boundary condition (1.2) ignores the particular nonlinear effect associated with finite 
displacement of the piston, i t  being purely local and of no significance away from the 
pis ton. 

The problem (1,1)-( 1.2) is rendered non-dimensional by the transformation 

v = (r/r,)iJ u/u,, 6 = w7,  

R, = (y+ 1 )  Uowro/2a$ 

(1.3) 
( 1 . 4 ~ )  

6 = @ A / ( ? +  1 )  UoR,a,, R = 2Ro{(r / r , )~- 1) for J = 1, (1.4b) 

6 = w d / ( y +  1 )  Uaa,, R = R,ln (r/r,) for J = 2, ( 1 . 4 ~ )  
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V' - VV,  = c[$ + RJ V,, (1.5) 

V(0,O) = sin (0) (0 < 0 < n), (1.6) 

(1.7) 
and (1.6). Since ( 1 . 1 )  preserves the parity and periodicity of the boundary value, we 
take only the principal interval 0 d 0 < n, and impose the boundary end conditions 

(1.8) 

The (nonlinear) harmonic problem for the plane symmetry is described by the 
standard Burgers equation 

while for the spherical case, J = 2,  it becomes 

V, - VV,  = e exp (RIR,) V,, 

V(R,O) = V(R, A )  = 0. 

V,- V v ,  = €&@, (1.9) 
together with the boundary conditions (1.6) and (1.8).  This problem in its initial- 
value formulation, where R and 0 are replaced by t and x, respectively, and V is 
changed to - V, has been treated in a fairly exhaustive way by Cole (1951). Indeed, 
it has a rich history with contributions from several other investigators (Fubini 1935 ; 
Fay 1931 ; Blackstock 1964; see Sachdev 1987). The analytic treatment of the plane 
harmonic problem became possible owing to access to Hopf-Cole transformation 
which changes (1.9) to the heat equation with a correspondingly simple transform- 
ation of the boundary (initial) condition (1.6). This problem was also treated by 
matched asymptotic expansion by Lesser & Crighton (1975), and Parker (1980). 
These studies threw further light on the structure of the solution, particularly in the 
early stages of the evolution of the profile when the shock is relatively thin and its 
structure is essentially Taylor-type with a simple balance between nonlinear 
convection and small (linear) diffusion. It is pertinent to briefly delineate the 
evolution of the sine wave as governed by (1.9) during the entire course of the wave 
propagation. First, when the profile V = sin (0) distorts owing to nonlinear convection 
alone (8 = 0 in (1.8)), the solution is described by the implicit form 

V =  sin@), p = B+Rsin(p), (1.10) 

which has an explicit Fourier series representation 

(1.11) 

(Fubini 1935), where J, is a Bessel function of order n. As the profile steepens on its 
front, i t  breaks, assuming a multiple-valued character. It then evolves under the 
Burgers equation (1.9) and experiences its embryonic stage. After a short duration 
it assumes a form with a balanced Taylor shock and is described by the composite 
solution 

V =  ( - 1 )(rtanhnO-O) 
R + 1  2e(R+1) ' 

(1.12) 

with a tanh form of the shock. The profile gradually transforms itself and is then 
described by 

O0 sin (n0) V'2€2: 
71=1 sinh [ns(R + l)]  ' 

(1.13) 
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The solutions (1.12) and (1.13) overlap over large R values. The solution (1.13) is 
referred to as the Fay solution. It is the Fourier series version of the composite 
solution made up of the sawtooth solution 

n-e 
~ + 1 ’  

V - -  (1.14) 

and the shock solution 

V(R, 0) = h(R) tanh [$h(R) O l e ] ,  h(B) = ( l / R )  J;l (l/R). (1.15) 

Here J,(s) = sin (s)/s is the spherical Bessel function and J;l is the function inverse 
to J,. The solution (1.13) displays clearly the generation of higher harmonics during 
the distortion of the wave due to  nonlinearity. The asymptotic ‘old-age’ form is 

V = 48 exp ( - eR) sin (8). (1.16) 

This form of the solution reflects two features: the reduced amplitude of the first 
harmonic in its old age and the non-appearance of any parameter describing the 
initial amplitude. (The parameter E can be scaled out of (1.9) and (1.16).) The latter 
phenomenon is called amplitude saturation. We may point out the interesting fact 
that  Cole (1951) in his basic paper had derived the formulae (1.10)-( 1.13) from the 
solution of the initial-value problem (1.9) and (1.6) as approximations under certain 
limiting processes. These were subsequently shown to be exact solutions of the 
problem holding in different regimes. Besides, Lesser & Crighton (1975) and Parker 
(1980) derived the (exact) solution (1.13) as the first-order matched asymptotic 
solution of the same problem. Thus this matched asymptotic (expansion) first-order 
solution turns out to be an exact solution ! We may close the review of the plane case 
by the comment that the transitions from one form of the solution of (1.9) to another 
are not clearly delineated and need further elucidation, possibly by a numerical 
study. 

The cylindrical and spherical problems (1.5) and (1.7) with the initial and boundary 
conditions (1.6) and (1.8) lose the facility of Cole-Hopf transformation (or one like 
it) and therefore their analysis is more difficult. An exact analytic solution does not 
seem feasible ; one must seek either asymptotic solutions or precise numerical 
solutions which may verify the former and pave the way for further analysis. Before 
we discuss our numerical results, we summarize two asymptotic studies. The first is 
due to Scott (1981) which gives a thorough account of different cases that arise in the 
(e-R,)-plane, for which some asymptotic solutions may be found. Here e and R, are 
the two dimensionless parameters which appear in (1.5) and (1.7). The second study, 
due to Enflo (1985), attempts a solution for the cylindrical Burgers equation similar 
to the Fay solution for the plane one (see (1.13)). Since these studies have an 
important bearing on our results, we give them in some detail. 

1 . 1 .  A review of Scott’s analysis 
The main object of Scott’s paper was to set up expansions uniformly valid in E and 
R, for the problems (1.5) and (1.7), with the conditions (1.6) and (1.8). This required 
the introduction of a number of matching asymptotic domains in the (e-R,)-plane. 
Corresponding to each domain, various asymptotic regions in space-time were 
specified. Scott could give explicit asymptotic solutions in some of the domains in the 
(e-R,)-plane for some regions in the (B-R)-plane. This became possible in cases 
where the governing asymptotic partial differential equation was either linear or the 



392 P .  L.  Sachdev and R. R. C .  Nair 

standard Burgers equation or the inviscid equation. These were referred to as 
reducible problems. In  some cases the problem proved to be irreducible in the sense 
that it required the solution of the full non-planar equation (1.5) or (1.7). In the 
cylindrical symmetry, the irreducible problem had the advantage that i t  had no 
parameter appearing in i t ;  i t  was therefore referred to as canonical. It is t,his 
canonical problem that Enflo (1985) attempted to solve with a view to studying the 
saturation phenomenon, namely the amplitude of the final old-age wave turning out, 
to be independent of the amplitude of the wave at the source. We list below all 
domains considered by Scott and summarize his analytic results for some 
representative cases in $3.  For these cases we have definite corroboration with our 
numerical results. The domains in the cylindrical symmetry are denoted by C 1, C 2 ,  
. .. and those of the spherical case by S 1, S 2, . . . . 

(i) Cylindrical case 
( C l )  e <  1, eR:4 1, (C2)  e 4 1, eRi= O ( l ) ,  

(C5)  &,B 1, c R ~ B  1, (C6)  C B  1, ER;=O(l), 
(C7) e 9 1, E R ~  4 1, (C8) c = 0(1), R, < 1. 

((33) € R o e  1, ERiB 1, (C4) €Rig 1, ER,=O(l), 

(ii) Spherical case 
( S l )  eexp(l/R,)/Rt % 1, cRo + 1, (S2) eexp(l/R,)/Ri = 0(1), eRo 4 1, 
(S3) eexp(l/R,)/R; < 1, a, + 1,  (S4) ER, = O ( l ) ,  e 4 1, 

(8 7) a 0 B  1, C B  1, (S8) eRo = 0(1), e 4 1. 

1.2. Comments on Enso’s work 
Enflo (1985) undertook to solve for cylindrical symmetry one of the irreducible 
problems of Scott (see (C 1) above), namely 

u,- uu, = (ix) u,90, 

(S 5) eR,P 1, e +  1, (S6) R, D 1 ,  E =O(l) ,  

(1.17) 

subject to the matching conditions 

U =  (1/x)[ntanh(rcO/z2)-O] ( - n < O < n ) ,  asx+O, (1.18) 

and U =  Cexp(-ix2)sin(8) as z+m. (1.19) 

He first recovered the Fay solution to the plane Burgers equation (see Appendix A 
of his paper) 

u, - uu, = ues, (1 20)  

U =  (l /x)[~ctanh(nO/2~)-8] (-n<O<z), asx+O, (1.21) 

and U = Cexp (-2) sin (4, as x+ 00, (1.22) 

subject to the matching conditions 

similar to (1.18) and (1.19) (e has been scaled out of the equation), by the ansatz 
to 

U(x, 0) = C CI exp ( -nx) fn(8) .  
n-1 

(1.23) 

This was essentially the approach adopted by Fay himself. By substituting (1.23) 
into (1.20) and equating coefficients of powers of exp ( -m) to zero, Enflo obtained 
an infinite system of linear ordinary differential equations for the functions fa(@, 
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which he solved recursively. The unknown constants which appear in the solution 
were chosen ‘judiciously ’ to  recover the form of the Fay solution. I n  particular, the 
matching of the solution (1.23) a t  z - 0, for small x such that nz = O(l ) ,  and 8 < z 
with the solution (1.21) led to the exact determination of the old-age constant. It 
must be emphasized that the knowledge of the exact Fay solution was a considerable 
help in this analysis. We may here compare our asymptotic treatment of cylindrical 
N waves (see Sachdev, Tikekar & Nair 1986) with Enflo’s work. Introducing several 
transformations motivated by the knowledge of the plane N wave, we could find an 
exact asymptotic solution of the cylindrical N wave, leading to an exact analytic 
form for the Reynolds number which involved two unknown arbitrary constants. In 
our case, the independent variables in the expansion corresponding to (1.23) were 
time and the similarity variable. We also made use of the (asymptotic) inviscid 
solution near the node z = 0 and the old-age form of the N wave to  derive the form 
of the fully nonlinear N wave regime. However, this approach failed to  provide an 
analytic asymptotic result for the spherical N wave. 

Enflo sought the asymptotic solution of the problem (1,17)-(1.19) in the form 
m 

U ( X ,  8)  = C 2 exp ( -;nx2)fn(z, B),  
n-1 

(1.24) 

with the choice fl(B) = sin (8). He was again able to  write the solution of the functions 
fn recursively in the form 

f ,  = C,,sin(O), C,, = 1, 

f2 = C,,(z) sin W), 
f3 = C,,(z) sin (30) +C,,(z) sin ( O ) ,  

C,,(x) sin (B), n odd, 
C,,(z) sin (2B), n even. 

f , ,  = C,,(s)sin (nB)+Cn,,- ,(x)sin[(n-2)8]+ ... + 
The functions C,,, C22, C,, and C,, could be explicitly determined. The general form 
for C,, was written out but was found to  be too involved for explicit determination. 
Enflo, therefore, attempted an asymptotic evaluation of the functions C,, for 
r2 $: n. He sought the behaviour of C,, in the form 

c k k  x ($)k-l 2 exp [k (a+pz2) ] .  

To determine the constants a and p Enflo resorted to some kind of ‘ curve fitting ’ and 
extrapolation. We omit the details here. It is remarkable that by this approximate 
approach he arrived a t  a value fairly close to the constant C in the old-age solution, 
as we shall demonstrate in $3  where we give the numerical results of the present 
problem. We surmise that the expansion of (1.17) in an infinite series in z and 8 is 
probably much more complicated than that for (1.20). This approach due to Enflo 
is very interesting but would require further careful pursuing. 

2. Plane nonlinear harmonic waves 
It is useful first to study the solution of the plane Burgers equation (1.9), subject 

to  the sinusoidal initial and boundary conditions (1.6) and (1 3). This study serves 
several purposes; (i) while the solution of the problem is known due to Cole-Hopf 
transformation (Cole 1951), it  has different forms in different R (time-like) regions; 
each of these solutions is exact. One must be able to  visualize clearly the transitions 
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and duration of the different solution regimes; (ii) proper understanding of these 
should aid the search for analytic solutions for the non-planar Burgers equation and 
(iii) the numerical methods employed for non-planar Burgers equations can be 
checked for their stability, accuracy and computational economy. We may point out 
that the numerical simulation of the initial boundary-value problem (1.9), (1.6) and 
(1.8) is by no means a trivial task as will become evident from the following. 

From physical arguments concerning the build-up of the waves from the signals a t  
the source, it is not difficult to convince oneself that  in the earliest stage of the wave 
evolution, the propagation is essentially inviscid so that (1.9) is replaced by 

v,-vV, = 0. (2.1) 

This equation with the initial and boundary conditions (1.6) and (1.8), respectively, 
has the implicit solution (1.10). This solution was written in terms of the Fourier sine 
series by Fubini (see (1.1 l)), with Fourier coefficients involving Bessel functions. The 
solution (1.10) or (1.11) remains single valued until R = 1 when it breaks to become 
multiple valued near 0 = 0. Away from 0 = 0 the solution (1.10) is still valid. At 
R = 1, one must introduce a small viscous term to balance the nonlinear convective 
term to obtain a smooth shock transition. Thus, (1.9) now takes over. It was shown 
by Lesser & Crighton (1975), and later by Parker (1980), using a singular perturbation 
argument that the first-order matched asymptotic solution of (1.9) and (1.6) is the 
composite solution (1.12). It is remarkable that this matched asymptotic solution is 
in fact exact. However, between the inviscid solution (1.10) and the composite 
solution (1.12), there is a small region R = O( 1) over which the inviscid solution (1.10) 
adjusts itself to the composite solution (1.12). This is called the embryonic shock 
region. The solution of (1.9) evolves further, the thin shock broadens, the hypotheses 
on which the singular perturbation solution was derived fail. Thus, for R = O(e-l), 
the composite solution breaks down. Fortunately, there is a Fourier series version 
(1.13) of the composite solution (1.12) (see Lesser & Crighton 1975) which begins to 
operate well before the composite solution fails. This solution holds all the way until 
the wave has died out sufficiently and viscosity has become significant everywhere 
and not just in the narrow-shock region. The solution then has entered its old age and 
is governed by the first term in the series (1.13), namely (1.16). 

Thus, for R 9 E-',  the wave contains only a single Fourier component which decays 
under viscosity alone. The constant 4 in the old-age solution (1.16) is the universal 
constant for this plane canonical problem for all E .  (Indeed, the parameter E can be 
scaled out of (1.9).) 

Now, we turn to the numerical validation and elucidation of the above analytic 
resu1ts.t First, we solved (1.9) with initial and boundary conditions (1.6) and (1.8) 
using a pseudospectral scheme. The finite-difference analogue of this scheme for the 
problem 

v,- VV, = M q  v,, (2.2) 

with g(R) = 1, $+R,, and exp (RIB,) for plane, cylindrical and spherical Burgers 
equation, respectively, is 

(2.3) V(R+AR, e) = V(R, 0 )  + mvR + m2vRR + . .. , 
t The details of numerical results reported in this paper may be obtained directly from the 

authors or the Editor. 



The derivatives of Ti, V,, V,,, etc. with respect to 0 are evaluated using a truncated 
Fourier series. The finite Fourier transform of V(R,B) is defined as 

K-1 

V(R, k,) = (l/K) C V(R, pA0) exp ( -ik,pAO), (2.7) 
p=o 

over the scaled interval (0,2n) of 8. Here, 0 = 2n/K, K denoting the number of mesh 
points and kj are the wavenumbers varying between 0 and K- 1. The inverse Fourier 
transform is 

V(R,pA0) = C V(R, kj) exp (ikjpAO). (2.8) 
Ikjl<iK 

The spatial derivatives a t  the mesh points are 

V,(R, PA@ = C (ikj) v(R,  kj) exp (ikjpAO), (2.9) 

Vm(R, pA0) = C (ikJ2 V(R, kj) exp (ikjpAO), (2.10) 

lkjl<iK 

lkjl < i K  

etc. The solution at R + AR is accurate to O[(hR)4]. The numerical solution manifests 
small oscillations near 0 = 0 for R > 1, if we choose the domain to be 0 < 8 < n. The 
use of the profile over the full period -71: < 0 < 71: obviates this difficulty and the 
solution proceeds smoothly. The analytic solution in the Fubini series (1.11) does not 
converge near 8 = 0. We therefore, used the implicit solution (1.10) and evaluated it 
numerically using the Newton-Raphson method. The numerical and analytic 
solutions agree very well (see table 1). Figure 1 shows the evolution of the profile from 
R = 0 to R = 10. For R > 1, the profile transforms to acquire a balanced Taylor shock 
passing through the embryonic shock regime. Figure 1 also gives a total view of the 
evolution of the sine curve through all its forms - inviscid, sharp shock, evolutionary 
shock and thick shock stage. While the initial sine wave evolves under the ixfluence 
of the plane Burgers equation its peak moves to the left, up to R z 2,  and then to the 
right. The peak establishes itself at the middle of the half wave, 0 = in, with the onset 
of the old age a t  R x 500. It continues to be so until the profile completely vanishes. 
When R x 5 ,  the profile becomes smooth enough to warrant a switch to the 
predictor-corrector implicit finite-difference scheme which is several times faster 
than the pseudospectral scheme (see Sachdev et al. 1986). The implicit finite- 
difference analogue of equation (2 .2)  is as follows: 

Predictor : 

%+I, j+;- 2[1 +h2/(&Tj,$l v,,j+t+ %-I,,+; 

= -[h/(2€9,,$1 v,,,[4h/kl [&+I,,- &-J> (2.11) 
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V(R = 0.1,O) V(R = 0.5,O) V ( R  = 1 , O )  

0 Xumerical Fubini Xumerical Fubini Numerical Fubini 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
0.06 14 0.0682 0.0682 0.1200 0.1221 0.5236 0.6616 
0.1227 0.1359 0.1360 0.2363 0.2407 0.7321 0.7930 
0.1841 0.2029 0.2032 0.3466 0.3527 0.8316 0.8689 
0.2454 0.2689 0.2693 0.4486 0.4559 0.8915 0.9183 
0.5522 0.5723 0.5730 0.8127 0.8207 0.9892 0.9998 
0.8590 0.8070 0.8079 0.9688 0.9750 0.9612 0.9675 
1.1658 0.9517 0.9527 0.991 1 0.9957 0.8822 0.8864 
1.4726 0.9990 1 .oooo 0.9296 0.9329 0.7749 0.7778 
1.7794 0.9530 0.9539 0.8134 0.8159 0.6499 0.6520 
2.0862 0.8252 0.8260 0.6607 0.6625 0.5132 0.5147 
2.3930 0.6319 0.6324 0.4837 0.4848 0.3688 0.3698 
2.6998 0.3912 0.3915 0.2910 0.2917 0.2194 0.2200 
3.0066 0.1222 0.1223 0.0897 0.0899 0.0673 0.0675 
3.0680 0.0668 0.0668 0.0490 0.0491 0.0367 0.0368 
3.1293 0.01 11 0.01 11 0.0082 0.0082 0.0061 0.0061 
3.1416 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

(1.10)-( 1.14)). 
Note: ‘Numerical, analytic, Fubini, sawtooth, composite and Fay’  in Tables 1 4  (see solutions 

TABLE 1. Numerical and analytic (Fubini (1.10)) solutions of the Burgers equation (1.9) 

(2.12) 

Here, V(R,  0) = V(Rj ,  0,) = &, R ,  = jAR and Bi = iAB. The mesh sizes are h = A0 = 
n/M, and k = AR = 1/N,  where M and N are the number of mesh points in the 0 and 
R ranges, respectively. j = 0 corresponds to R = 0, and i = 0 and M correspond to 
8 = 0 and 19 = x ,  respectively. Thus, at the boundaries, 4,0 = sin (Oi), i = 0 , 1 ,  ..., M 
and Vo,j  = VM,i = 0 for j = 0 , 1 , 2 ,  . . . . Equation (2 .11 )  is linear in &,j+t ,  k = i - 1, i 
and i + l .  Since the associated coefficient matrix in the solution is invariant 
throughout the computation, i t  is enough to invert it just once. Equation (2 .3 )  is 
nonlinear in Vk,j+l, k = i- 1, i and i+ 1. The associated coefficient matrix in the 
solution depends on the predicted values at Rj++ It has to be inverted at each 
computing level R j + l .  

Douglas & Jones (1963) demonstrated the convergence of scheme (2.1 1)-(2.12) for 
the nonlinear PDEs of the parabolic class including the equations of the Burgers 
type. The truncation error of the scheme is O ( h 2 + k 2 ) .  For profiles without 
discontinuities and with smooth gradients, the scheme (2.11)-(2.12) delivers very 
good solutions. For R 9 1, the numerical solution agrees very closely with the 
analytic solution (composite and Pay) wherever the latter are valid (see table 2 ) .  
Both the solutions (composite and Fay) hold for a fairly long duration. The former 
begins to fail when R x 200, but the latter continues to  furnish very good results all 
the way to the extinction of the profile. It is interesting to note that soon after the 
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V 

0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 ! 
6 

FIGURE 1. Numerical solution of the Burgers equation (1.9) at R = 0.5, 1, 2, 5, and 10 (initial 
profile a t  R = 0 is also shown). 

V(R = 100,O) V(R = 200, e) 

8 
0.0000 
0.0614 
0.1227 
0.1841 
0.2454 
0.5522 
0.8590 
1.1658 
1.4726 
1.7794 
2.0862 
2.3930 
2.6998 
3.0066 
3.1293 
3.1416 

Numerical 

0.0000 
0.0024 
0.0047 
0.0069 
0.0089 
0.0162 
0.0186 
0.0180 
0.0159 
0.0132 
0.0104 
0.0074 
0.0044 
0.0013 
0.0001 
0.0000 

Composite 
0.0000 
0.0024 
0.0047 
0.0068 
0.0089 
0.0 162 
0.0186 
0.0179 
0.0159 
0.0132 
0.0104 
0.0074 
0.0044 
0.0013 
0.0001 
0.0000 

Fubini 
0.0000 
0.0024 
0.0047 
0.0068 
0.0089 
0.0162 
0.0186 
0.0179 
0.0159 
0.0132 
0.0104 
0.0074 
0.0044 
0.0013 
o.Ooo1 
0.0000 

Numerical 
0.0000 
0.0005 
0.0009 
0.0013 
0.0018 
0.0036 
0.0049 
0.0055 
0.0055 
0.0050 
0.0041 
0.0031 
0.0019 
0.0006 
0.0001 
0.0000 

Composite 
0.0000 
0.0004 
0.0009 
0.0013 
0.0017 
0.0036 
0.0049 
0.0055 
0.0055 
0.0050 
0.0041 
0.0030 
0.0017 
0.0004 

* 
* 

Fubini 

0.0000 
0.0004 
0.0009 
0.00 13 
0.0017 
0.0036 
0.0049 
0.0055 
0.0055 
0.0050 
0.0041 
0.0031 
0.0019 
0.0006 
0.0001 
0.0000 

* Composite solution is not valid. 

TABLE 2. Numerical and analytic (composite (1.12) and Fay (1.13)) solutions of the  Burgers 
equation (1.9) 

old age sets in, the profile becomes symmetric again about 13 = in and continues to 
be so until it is nearly extinct at R z 1000. The profile, becoming symmetric once 
again, is a good indication of the onset of old age. The old-age solution provided an 
excellent check on the numerical solution. The constant C in the old-age solution is 
recovered as 3.99, in close agreement with its analytic value equal to 4. 

We briefly give the domains of validity of the various analytic solutions - Fubini, 



398 P. L. Sachdev and K. R. C. Nair 

sawtooth, composite and Fay. For R < 1, the Fubini solution (1.10) holds good for 
0 < 6 < ‘IT. It ceases to  hold for R 2 1, near 6 = 0 but is still valid for 6 p 0. Here, 
even the sawtooth solution holds well away from 6 = 0. For R < 3, the sawtooth 
solution continues to hold for 6 > 0. For R > 3 the composite solution takes over and 
holds everywhere in 0 < 6 < rc. The sawtooth solution begins to  fail for all 6 when 
R > 5 while the composite and Fay solutions provide good results. This is so until 
R x 200 when the former fails while the latter continues to provide excellent results. 
It may be noted that the Fay solution agrees with the numerical solution to more 
than four decimal places over a long range spanning between R x 5 and R x 900. For 
R > 500 the old-age analytic solution provides excellent results. In  several 
overlapping regimes, even though the solutions do not hold near 6 = 0, they give 
excellent results elsewhere (with an accuracy of about four decimal places). For 
example, the Fubini and composite solutions agree very well with the numerical 
solution for 0 -g 6 < ‘IT when R > 1. 

Equation (1.9) was also solved with the initial profile a t  R = 1 (see (1.10)). This 
profile has a sharp shock near 6 = 0. We used the pseudospectral scheme until the 
shock smoothed out. The predictor-corrector scheme was then used for fast 
computation. The numerical value of the old-age constant C in this case is also found 
to be 4. 

3. Spherical and cylindrical harmonic waves - numerical results and 
comparison with asymptotic results 

Since there is no Hopf-Cole transformation for spherical and cylindrical Burgers 
equations, an explicit solution for the harmonic problem for these cases is not 
feasible. There are asymptotic results of Crighton & Scott (1979) and Scott (1981) 
which provide analytic forms in some parametric domains and prove helpful in the 
numerical study of the non-planar problems. As we have noted in $ 1 ,  Scott’s 
asymptotic study in the (s-R,)-plane leads to four important categories of reduced 
problems and their solutions. We have therefore found it convenient to carry out our 
numerical studies for choices of parameters B and R,, which are typical of each of 
these categories, for both spherical and cylindrical geometries. 

(i)  The asymptotic expansion leads to a canonical problem with no parameter 
appearing explicitly in it. In  the cylindrical case, the canonical problem may be 
stated as follows : 

F, - FFo = $Foe, ( 3 . 1 ~ )  

8F - 72: tanh (72:6/s2)-6] as s+O, (3.1 b) 

F - Cexp(-$ss2)sin6 as s+co. ( 3 . 1 ~ )  

This is the problem discussed by Enflo (1985). The old-age constant C is ‘universal’ 
in the sense that it does not depend on the parameters E and R,. This canonical case 
manifests the saturation phenomenon rather dramatically (see (v) below). W e  
remark that Scott’s analysis for the spherical Burgers equation does not lead to  any 
canonical problem for it. 

(ii) The asymptotic expansion results either in an irreducible form in which E and 
R, or some combination of both appears . The specific parameters to represent this 
domain are chosen to be (a) E = 1 and R, = 0.01 for J = 1 and (b )  E = 0.05 and 



Cylindrical and spherical nonlinear acoustic waves 399 

R, = 20 for J = 2 (see (C8) and (S4) in $ 1). The asymptotic old-age solution for 
the cylindrical symmetry is 

V -  C(~)exp[-~E(~R~+R,R}]sin8 (R 9 1). (3.2) 
The constant C for E = 0.01 was found to be 0.88. This constant was found to have 
the same value for another choice of the parameters, E = 1 and R, = 0 belonging to 
the same domain. The asymptotic solution of the spherical Burgers equation is 

(a  = &lo). (3.3) 

The constant D(a)  for a = 1 was found to be 29.5 numerically. This value of D(a)  
agrees closely with that of Scott shown in his figure 3 (see Scott 1981, p. 221). The 
numerical and analytic (asymptotic) solutions of the cylindrical and spherical 
Burgers equations agree very closely (see Nair 1988). 

(iii) The asymptotic expansion leads to the Burgers equation with one or more 
parameters appearing in it. The typical parametric choices are ( a )  E = 0.01 and 
R, = 100 for J = 1 and (b )  E = 0.05 and R, = 200 for J = 2 [see (C4) and (S 5) in 413. 
The asymptotic form of solutions in these cases is 

V -  4C~exp[-~(~R*fR,R)]s in8  ( J  = l),  (3.4) 

and V - 4~exp[a{l-exp(R/R,)}]sin8 ( J  = 2), (3.5) 
where C = R0I1[1/(2&,)] /I , [1/(2&,)] ,  I ,  being the modified Bessel function of the 
first kind. There is again a good agreement between the asymptotic and numerical 
solutions. 

(iv) This is the case in which a quick transition to linearized (old-age) form takes 
place so that various intermediate stages are swept over at R = O(1). The typical 
values of the parameters are (a )  E = 0.1 and R, = 50 for J = 1 and ( b )  E = 5 and 
R, = 0.5 for J = 2 (see C5) and (S 7) in $1) .  We had to choose a mesh size 0(10-4) for 
R to overcome the initial numerical instability near r9 = 0. The asymptotic old-age 
solution for J =  1 is 

V - exp [ - e{$R2 + R, R}] sin (O), (3.6) 

(3.7) 

and that for J = 2 is 

V - exp [ -a(exp (RIB,) - l)] sin (8) (a = a,). 
The asymptotic solutions (3.6)-(3.7) and the corresponding numerical solutions were 
found to be in good agreement (see Nair 1988). 

(v)  Amplitude saturation. Saturation is said to occur when the amplitude of the 
wave for large R becomes independent of the source amplitude. In the cylindrical 
symmetry, this happens for the domains ( C l ) ,  (C2) and (C3) (see $1) .  The 
(asymptotic) reduced problem is free of all parameters as we pointed out in $ 1. The 
saturation occurs naturally in the canonical problem (see (3.1)). 

We solved numerically the problem (1 5 )  with initial and boundary conditions (1.6) 
and (1.8) with several sets of parameters and amplitudes: (i) E = 0.01, R, = 1,  
(ii) E = 0.04, R, = 0.5 and (iii) E = 0.02, R, = 0.5. For cases (i) and (ii) the initial profile 
is calculated at R = 1 from the inviscid solution while for case (iii) it is V = sin 8 a t  
R = 0. The constant C in the numerical solution converges in the near old-age regime 
to 1.95, 1.85 and 1.85, respectively for cases (i), (ii) and (iii). We surmise that this 



400 P. L.  Sachdev and K .  R. C .  Nair 

(b) 0.5 

0.4 

0.3 

urn 
0.2 

0.1 

0 

0 10 20 30 40 
R 

- 

U,, - 0.5 
- 

- 

- 

I 1 I I I I 

20 40 60 80 100 120 140 160 
7 

FIGURE 2. (a) Maximum value of the amplitude V,,, and its position for the solution of ( 1  5)  for ( i )  
B = 0.01, R, = 1 and (ii) E = 0.04, R, = 0.5. ( b )  Maximum value of the amplitude U for ( i )  U, = 0.5 
and (ii) U, = 0.25. 

constant is about 1.85. It is very close to 2, the value ‘estimated’ by Enflo. The 
maximum amplitude of the profile a t  various R as given by the old-age formula 

V - Cd exp - (iR2 + R, R) sin 8, (3.8) 

with C = 1.85 and that from the numerical solution agree very well. Here, as in the 
plane case, the re-emergence of the symmetry in the profile about O = $ t  proves 
invaluable in demarcating the onset of old age. The latter solution provides an 
excellent check on the numerical solution. The amplitude in old age falls 
exponentially with the solution maintaining perfect symmetry about 8 = $. 

Figure 2(a)  shows the amplitude V,, of the profiles in cases (i) and (ii) as they 
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FIQURE 3. Solution of the cylindrical Burgers equation (1.5) at R = 1, 1.5, 3, 5 and 8. 
0 

evolve under the cylindrical Burgers equation (1.5). Figure 2 ( b )  shows the 
corresponding amplitude in terms of the original variable U (see (1.3)-(1.4) for a 
relation between U and V ) .  The amplitude of the initial profile in case (i) is double 
that in (ii). However, both the profiles diffuse to merge after, r - 50, and tend 
subsequently to their asymptotic behaviour (see (3.1)). This illustrates the 
phenomenon of saturation. 

In  the spherical symmetry the saturation takes place in the domains (S4) and 
(S 5), and (S 6) under certain restrictions (see Scott 1981). The governing equation in 
the present case for the domain (S4) is 

Fs-FFo = exp(s/a)Foo, (3.9a) 

where the parameter a = cRo. The (asymptotic) matching condition is 
sF - n tanh (nO/2s) - 8, (3.96) 

as s+ 0, uniformly in -n < 8 < n. 
We now discuss a sine wave as it evolves under a cylindrical or spherical Burgers 

equation (equations (1.5)-( 1.8)). The evolutionary process covers the development of 
an embryo shock wave from the initial sine wave, its transformation into a Taylor 
shock and then into a thick shock and, finally, its decay in the old age (cf. Sachdev 
et al. (1986) for a similar study of the non-planar Burgers equation with discontinuous 
N wave initial condition). We also compare the numerical solution with the analytic 
(asymptotic) solutions (equation (3.11) below) of Scott. For this purpose, we choose 
the parameters to be 8 = 0.04 and R, = 0.5 for the cylindrical case, J = 1 ,  which we 
treat first. Equation (1.5) was solved with the solution of (1.10) at  R = 1 as the initial 
profile. This is the stage a t  which the sine wave has evolved into a sharp shock near 
O = 0 (see figure 3). In  the next evolutionary stage, the embryo shock transforms into 
a quasi-steady shock, as depicted in figure 3. The latter assumes a Taylor structure 
when R z 3. The comparison of the numerical solutions in this regime with the 
(approximate) composite solution 

I/= [l /(R+l)][ntanhnO/c(R+l) (R+2Ro)-81, (3.10) 
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V(R = 2,O) V(R = 5,6) V(R = io,e) 

0 Kumerical Analytic Kumerical Analytic Numerical Analytic 

0.000 
0.012 
0.258 
0.503 
0.749 
0.994 
1.240 
1.485 
1.730 
2.098 
2.344 
2.589 
2.712 

0.000 
0.267 
0.889 
0.828 
0.761 
0.691 
0.617 
0.541 
0.464 
0.385 
0.305 
0.224 
0.143 

0.000 
0.321 
0.961 
0.879 
0.798 
0.716 
0.634 
0.552 
0.470 
0.389 
0.307 
0.225 
0.143 

0.000 
0.047 
0.458 
0.436 
0.396 
0.356 
0.316 
0.275 
0.234 
0.194 
0.153 
0.112 
0.07 1 

0.000 
0.046 
0.459 
0.439 
0.399 
0.358 
0.3 17 
0.276 
0.235 
0.194 
0.153 
0.112 
0.071 

0.000 
0.008 
0.147 
0.204 
0.208 
0.193 
0.172 
0.150 
0.128 
0.106 
0.084 
0.061 
0.039 

0.000 
0.007 
0.133 
0.192 
0.202 
0.190 
0.171 
0.150 
0.128 
0.106 
0.084 
0.061 
0.039 

TABLE 3. Kumerical and analytic [see equation (3.10)] solutions of the cylindrical Burgers 
equation [e  = 0.01, R, = 11 

R 
35.084 
36.084 
37.084 
38.084 
39.084 
40.084 
4 1.084 
42.084 

Maximum value of V 

Kumerical Analytic 
0.00622 0.00600 
0.005 16 0.00498 
0.00427 0.00410 
0.00351 0.00337 
0.00287 0.00275 
0.00233 0.00223 
0.001 89 0.001 80 
0.001 52 0.001 45 

R 
43.084 
44.084 
45.084 
46.084 
47.084 
48.084 
49.084 
51.151 

Maximum value of' V 

Numerical Analytic 
0.001 22 0.001 16 
0.00097 0.00093 
0.00077 0.00071 
0.0006 1 0.00057 
0.000 48 0.00045 
0.00038 0.00035 
0.00029 0.00027 
0.00017 0.00016 

TABLE 4. Old-age (numerical and asymptotic) solutions of the cylindrical Burgers equation 
(C = 1.85, e = 0.01, R, = 1) 

is shown in table 3. There is a reasonable agreement in 2 < R < 10. This is followed 
by the shock thickening. When R N 12, the wave shows a tendency to become 
symmetric about 0 = in. It becomes essentially symmetric about 8 = in a t  R = 20 
when the old-age regime sets in. At this stage the wave has sufficiently damped, the 
evolution is controlled purely by the linearized form of (1.5), and the nonlinear term 
hardly contributing in the competing processes. The old-age solution is shown in 
table 4. This table also shows the asymptotic solution 

(3.11) 

(see Scott 1981). The numerical solution and the asymptotic solution (3.11), with 
C = 1.85, agree very closely. 

Now we discuss the sine wave as it evolves under the spherical Burgers equation 
(1.7) and the boundary conditions (1.6) and (1.8). The parameters e and R, are chosen 
to  be 0.01 and 1, respectively. This choice belongs to  the domain (S 3) of Scott (see 
$1).  In the initial stage, the evolution is essentially controlled by the inviscid part of 
(1.7). The numerical and analytic (inviscid) solutions in this regime are found to be 
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FIGURE 4. Solution of the spherical Burgers equation at R = 0.5, 1, 2 and 3 (initial profile 
at R = 0 is also shown). 

quite close. For R > 1,  the wave develops an embryo shock (see figure 4). It may be 
mentioned here that, as in other geometries, the inviscid solution holds quite 
accurately to the right of the maximum for R > 1.  The embryo shock steepens owing 
to convection until i t  is resisted by diffusion. Soon the profile acquires a Taylor-shock 
structure (see figure 4). This regime is followed by a non-quasi-steady shock stage 
when R 1: 4. The shock broadens and the profile becomes nearly symmetric about 
0 = an at  R N 5. At R = 6, the profile is strictly symmetric about 9 = in and the 
old-age regime sets in with viscous diffusion and geometry as the only controlling 
mechanisms. 

4. Conclusions 
We have carried out a comprehensive numerical investigation of the non-planar 

Burgers equation (1 .1)  subject to the boundary conditions (1.2) and (1.8), simulating 
waves generated by a sinusoidal source. The purpose was first to check some of the 
asymptotic results of Scott (1981) and Enflo (1985). For this, we first reproduced the 
analytic results for the planar Burgers equation, which are known via Hopf-Cole 
transformation. This served several purposes : (i) the regimes over which different 
analytic solutions - inviscid, Fubini, Fay, and old-age - hold became clearly 
demarcated ; (ii) the canonical nature of the plane problem was re-established with 
the old-age constant recovered as 4 ; (iii) the sturdiness and accuracy of the numerical 
schemes - pseudospectral and implicit predictor-corrector - were confirmed. For 
most of the domains for non-planar generalized Burgers equations for which Scott 
(1981) could obtain some analytic results, numerical results were obtained and 
collated with the analytic ones. I n  particular, for the canonical problem (3.1) for the 
cylindrical Burgers equation, treated by Enflo, the old-age constant in ( 3 . 1 ~ )  was 
computed to be 1.85. This is in reasonable agreement with Enflo’s estimate of 2. 
However, Enflo’s analysis needs to  be pursued more carefully to dispense with some 
intuitive arguments. This a t  the moment seems difficult. The saturation phenomenon 
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for the cylindrical problem has also been demonstrated (see $3). An interesting feature 
of the numerical solution is the re-emergence of the symmetry of the solution about 
6' = $T in the old age, albeit the amplitude decreasing exponentially (see (3.2)-(3.7)). 
The actual numerical solutions are found to agree closely with the analytic old age 
form, thus providing an excellent check on the veracity of the former in this large 
time regime. 

This work was in part supported by the DST (India) Scheme AM/PLS/l29. 
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